
Schéma TDD :
Écrire un test pour une fonctionnalité à développer.
Faire échouer le test (fonctionnalité non implémentée).
Implémenter la fonctionnalité pour passer le test.
Vérifier que le test réussit.
Refactoriser le code tout en s’assurant que le test continue à passer.
Répéter.
MVC :
M : Model – Gère les données, la logique métier et les règles de l'application.
V : View – Affiche les données à l'utilisateur et capte ses interactions.
C : Controller – Coordonne les interactions entre Model et View.
Patron sous-jacent à MVC :
Observateur (Observer-Observable).
Principe SOLID (exemple - Single Responsibility Principle) :
Une classe doit avoir une seule responsabilité et ne changer qu'en fonction d'une seule raison.
Différence entre pull et push :
Push : L'Observable informe directement l’Observer des changements.
Pull : L’Observer demande les informations mises à jour à l’Observable.
Loi de Déméter (ajouterEtudiant) :
La méthode peut invoquer d'autres méthodes uniquement sur :
Ses propres attributs (Promotion, Étudiant).
Les objets qu’elle reçoit en paramètre.
Exemple de code refactoré :
Nom des variables/méthodes peu explicites
Avant :
public void doStuff(String a) {
 System.out.println(a);
}
Après :
public void afficherMessage(String message) {
 System.out.println(message);
}
Explication : Les noms doStuff et a ne reflètent pas l’objectif. Le nom est remplacé par afficherMessage, et le paramètre est renommé en message.
2 Complexité cyclomatique élevée
Avant :
if (age < 18) {
 System.out.println("Mineur");
} else if (age >= 18 && age < 65) {
 System.out.println("Adulte");
} else if (age >= 65) {
 System.out.println("Senior");
}
Après :
public void afficherCategorie(int age) {
 String categorie = determinerCategorie(age);
 System.out.println(categorie);
}
private String determinerCategorie(int age) {
 if (age < 18) return "Mineur";
 if (age < 65) return "Adulte";
 return "Senior";
}
Explication : La méthode d'origine est divisée en deux pour réduire la complexité et améliorer la lisibilité.

3.Références à des constantes magiques Avant :
if (userRole == 1) {
 System.out.println("Admin");
} else if (userRole == 2) {
 System.out.println("Utilisateur");
}					Après :
public static final int ROLE_ADMIN = 1;
public static final int ROLE_UTILISATEUR = 2;

if (userRole == ROLE_ADMIN) {
 System.out.println("Admin");
} else if (userRole == ROLE_UTILISATEUR) {
 System.out.println("Utilisateur");
}
Explication : Les constantes magiques (1 et 2) sont remplacées par des noms explicites, ce qui rend le code plus compréhensible.
Répétition de code
Avant :
System.out.println("Bienvenue, utilisateur !");
System.out.println("Veuillez entrer votre mot de passe.");
System.out.println("Connexion en cours...");
Après :
public void afficherMessage(String message) {
 System.out.println(message);
}
afficherMessage("Bienvenue, utilisateur !");
afficherMessage("Veuillez entrer votre mot de passe.");
afficherMessage("Connexion en cours...");
Explication : La répétition est remplacée par une méthode réutilisable.
Couplage élevé
Avant :
public class UserService {
 private Database database = new Database();

 public void saveUser(User user) {
 database.save(user);
 }
}
Après :
public class UserService {
 private final Database database;

 public UserService(Database database) {
 this.database = database;
 }

 public void saveUser(User user) {
 database.save(user);
 }
}
Explication : Le couplage est réduit en injectant la dépendance Database via le constructeur, facilitant ainsi les tests et les modifications. Exemple de code pour 3me exercice
Diagram UML avec Unite comme classe abstraite, des méthodes getPuissance et add/removeUnite dans les transporteurs (Tank, Destroyer).
abstract class Unite {
	protected int puissance;

	public Unite(int puissance) {
 	this.puissance = puissance;
	}

	public int getPuissance() {
 	return puissance;
	}
}
class Soldat extends Unite {
	public Soldat(int puissance) {
 	super(puissance);
	}
}
abstract class Transporteur extends Unite {
	private final List<Unite> unites = new ArrayList<>();

	public Transporteur(int puissance) {
 	super(puissance);
	}

	public void addUnite(Unite unite) {
 	unites.add(unite);
	}

	public void removeUnite(Unite unite) {
 	unites.remove(unite);
	}
	public int getPuissance() {
 	return puissance + unites.stream().mapToInt(Unite::getPuissance).sum();
	}
}
class Tank extends Transporteur {
	public Tank(int puissance) {
 	super(puissance);
	}]

